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Outline

# Indirect detection based on observations of dwarf satellite
galaxies

# The properties of Ursa Major I1I (UMa II1)

# Set constraints on DM annihilation cross section
based on the Fermi-LAT gamma-ray observation

# Investigate the SKA sensitivities to the radio signals



Photon signals from WIMP

# Preserve the information of the nature and distribution of the DM

# Primary signal flux of DM annihilation
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J factor: astrophysical factor depending on the DM distribution of source

¢ Primary signal flux of DM decay
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¢ Primary processes. We focus on gamma-ray signals from WIMP
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Multi-wavelength signals

Inverse Compton scattering

bb channel with M, = 100 GeV
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magnetic field

Secondary emission processes. primary e* from DM annihilation/decay interact with other
matter during propagation. They produce photons at lower energies.

Include inverse Compton scattering, synchrotron, bremsstrahlung, and Coulomb energy loss.
Signals from radio to X-ray. High resolution.
Flux depends on the environment of astrophysical systems. Uncertainties!



Dwartf satellites are ideal probe
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¢ Duwarfs are ideal probe for DM indirect detection
# Nearby sources; large mass-luminosity ratio (DM dominant); small backgrounds
# Current 60+ sources. Increasing discoveries



Limits from dSphs
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4 limits base on the observations of Fermi-LAT, HWAC, H.E.S.S., MAGIC, and VERITAS
Observations of 20 dSphs are considered in the combined analysis
# Ground-based gamma-ray experiments investigate very high energy gamma-ray

Set constraints for very heavy DM

¢ Uncertainties of the J-factor should be considered



Limits from dSphs
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# Latest LHAASO limits (from 16 dSphs)
# Most stringent limits on heavy DM
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J factors

4 ] factor is very important for these studies

4 Can be derived from Jeans analysis or scaling relation
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Few sources are more important

J,a(<0%1) (GeVZ cm-%)

10%

1028

10%

1021

1020

1018 k-

1018

1017

[
1
1
I 1 1
E 1 I l | E
E I 1 | 1 | E
L Lo oconcnbos e iz eedooorsondloeseon-d 12 it beonedhocn- el JRmms rolloencmantbed benrocn b c-eedlonzan-ona theesoncn —
10 I | i | i 3
F I 1 I 1 I
10 oy | | | ! 3
F I 1 I 1 I E
L s B 1 e heeree -
10 I 1 I 1 I
L I I | I |
L Lo ooz cndbozoconsoslbnsoceassdoseos cocolboocesaosdl)seuscponsdlcazesssadbzonzozsadJocsssonodbascocasanlbel poosoalkozeozassdlanzonzon N
10 E I 1 I 1 ] E
£ I I | 1 | 1
1012 1 1 1 1

® This work (Einasto)
L. * Bonnivard+ 2015a.b

< H.E.8.S. Coll. 2014

[ # Simon+ 2015
k-~ Simon+ 2020
7 Viana+ 2012
+ Venville+ 2024

« Geringer—Semeth+ 2015 | 1T

| ] 1 1
Genina & Fairbairn 2016 7 e e

E ¢ Pace & Strigari 2019 T T S R I
F T T

1
1
I
1
1
1
1
1
1
1
1
L
1
1
|
1
I
1
|
]
|
I
L
I
1
L
1
I
L
1
I
1

1 1
Bool CBe Dral Grull Retll Scl Segl Sex Sgrl Sgril Trill UMall UMi Will

CTAO, 2508.19120

# Only a fraction of dSphs are needed to be used in indirect DM detection

# For instance, in the CTAO analysis

&
&

29 of total 64 dSphs are too far (with d> 100 kpc)

Considering the quality of photometric and spectroscopic data, only 14 dSphs are

selected

8 dSphs are optimal with large | factors



Properties of Ursa Major 111

Ursa Major III/UNIONS I is a stellar system discovered by a search for faint
Local Group systems in the deep wide-field Ultraviolet Near Infrared Optical
Northern Survey (UNIONS) in 2023.

Smith et. al, 2311.10147

This system is very close to the Earth.
Distance to the Sun is ~10 kpc; distance to the Galactic Center is ~14 kpc

Anold 7> 11 Gyr and metal-poor [Fe/H]~-2.2 stellar population.
Very small half-light radius ~3 pc. Stellar mass ~ 16 M. Absolute M~+2.2.

A dwarf spheroidal galaxy (dSph) or a star cluster.



UMa IIl is very close

# UMa I1I is very close to the Earth with d~10 kpc (1=194°, b=74°)
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UMa IIl is very close

# UMa I1I is very close to the Earth with d~10 kpc (1=194°, b=74°)
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Velocity distribution

Object Gaia Source 1D vE Feoy Member?
(kms~—1)
1 4024083571202406912 %0.31+1.3 0.99 Y
2 4024177442007708672  814+15 1.0 Y . B Members
3 4024177648166139904  89.9+1.5 1.0 Y = “="7 Non-Member
4 402417847 2800032016 926+ 1.6 0.99 Y < 3
5 4024179297433597056 n/a a 0.10 N 3
G 4024177648166141184 2RO+ 2.0 0.99 Y § 2
T 4024178472800038144 86.7T 1+ 2.5 0.99 Y g
& 4024036262137953536 T4.4+1.9 0.02 N 1 P
9 4024177442007709440 93.7T+2.5 0.75 Y i E AN
10 4024177751245359744 4.4 2.6 0.99 Y 0 . : - .\“““-. :
11 402417T682525881344 93.6 £ 2.5 n,:‘ab Y »on B : %0 -85 90- " E[;D 10> 10
Heliocentric Velocity (km s™+)
12 4024177442007706752 86.3 £ 2.8 nfab Y
13 4024177648166141312  88.6+33 n/al Y Smith et. al, 2311.10147

Using the measurements of velocity distribution of stars to determine the mass
and density of the system.

# Only 11 member stars are considered.



Velocity dispersion
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4 11 member stars, velocity dispersion ~3.7 km/s

# 10 member stars, velocity dispersion ~1.9 km/s
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What is the nature of UMa I11

¢ If UMa IlI is a star cluster Errani et. al, 2311.10134

Under the assumption of dynamical equilibrium, consider the virial theorem

5 GM, _
(Ti0s) = 56 px(r) = po exp(=r/ry)

Using the half-light radius and stellar mass, the velocity dispersion is

Tlos = (0'105}”2 = 49"{1 ms~!
This value is much smaller than previous measured value ~O(1) km/s

# Controversy, given the measured value, the dynamical mass is estimated as
Magn(< 1) ~ 4 Ry(02 )G ™" = (1.0%31) x 10 My,
By = (4;}_1) % 10'0 M, kpe=3

This system has large mass to light ratio and central density, thus it is a
dwarf galaxy with substantial DM component.
It may be the faintest and densest dwarf galaxy in the Milky Way.
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What is the nature of UMa I11
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Dynamical to stellar mass ratio indicates UMa 111 is not a star cluster.

Another argument: if UMa I1I is a star cluster, it will quickly disrupt within ~0.6
Gyr. This means that we accidentally observe it at a special point in its evolution.
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Significant annihilation signals

¢ The flux of DM annihilation signals is given by

1
O = - / LdE / / (ovyp*dldQ
STMpNp AQ

# The astrophysical factor J-factor is defined as

AQ
J(AQ) = / dQ dlp?* (1, y, )
0 l.o.s

The J-factor of UMa III can be roughly estimated as

4 D —2 1 /2 -1
0.5°) — 101787 ( Ol.0.s. ) ( ) ( / )
4 ) 5 km s 100 kpc 100 pc

J(0.5°) \ _ 10.60
log, (GeV2 Cm_5> = 20.87+9:99

Crnogorcevixc, Linden, 2311.14611

A very large value, indicating significant DM annihilation signals



Jeans equation

¢ In our study, we perform a Jeans analysis to determine the DM density
profile within UMa II11 Zhao, Bi, Lin, Yin, 2406.16769

# The dynamics of a stellar system in a gravitational field is determined by the
Jeans equation (assuming a spherical symmetry and steady-state system)

1 d 5 Bani(No7 _GM(r)
%E[V(F)O'r]-l-z ” = —r2

Wr): three-dimensional stellar number density
M(r): enclosed mass at r, dominated by DM

B(1): stellar velocity anisotropy Bui(r)=1-03/0?

# Solution

1 [ M(: )
W(r)os = A0 f A(s)v(s)G x )45 A(r) = A, expl |, | 2Buni(1)d1]

2



Jeans equation

Since only the two-dimensional projected stellar number density can be
provided by observations, the solution is rewritten as

2
v(r)o:r

a%R):i/m [1-[3 .(r)Rz} dr
P I(R) J& TR 2 R2

o(R): projected velocity dispersion at projected radius R
I(R): projected light profile

Consider NFW DM density profile
Ps

r r 2
—(1+—)
rS rS

Given three parameters ry, p, [, o(R) can be obtained.

PDM =



Jeans analysis

¢ Define likelihood function

€X l (vi — 1-))2 "
Ve [P\ D 2Ry A2

-Eun in —
=11 V2x [ (R) + A2

i=1

o(R): projected velocity dispersion at projected radius R
v: measured velocity of the member star
A uncertainty of the velocity in the measurement

P: probability of the star as a member star

¢ We use the package CLUMPY to perform an MCMC analysis.

More than 6000 profiles with parameters following the posterior probability
distribution are obtained



Velocity dependent annihilation

# The general velocity-dependent DM annihilation cross section can be written as
—_— — n
OVy =da- F(Vrel} =da- (vrel/c)
The average cross section at a specific position

(V) =a f f F (e f 1,0 f (v2, D)V

f(v, v): assume a standard isotropic Maxwell-Boltzmann distribution

(JV) ﬂ/ \/i rele__‘%!F(vrel)dVrel =a- f(r}

¢ We define an effective | factor

- f / p*(r) f(r)dIdQ
AQ !o';

—LdE,
SerDM /




Large J factor of UMa III

Comparison of J-factors at 0.5° for s-wave annihilation

# We consider three scenarios,
and obtain the large | factor i
and effective | factors for u i ]
UMa II1 1017 | i | i I

logyg J _ - 1 |
n e |
(log;[GeV-em™]) T s E
0 (s-wave) 21.4407 o |4 1 ] % I %
) )
2 (p-wave) 13.6%)¢ S j{
-1 (Sommerfeld-enhanced) 253403 g . |

Zhao, Bi, Lin, Yin, 2406.16769

# Compared with other dSphs, 16-
UMa 11I could provide more [
significant signatures I
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Large J factor of UMa III
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Strict constraints from Fermi-LAT

Given the close proximity and high DM density, UMa 111 is a very promising
target for DM indirect detection.

The location at high latitude implies there is no background from the Milky
Way.

No gamma-ray excess from UMa II1 has been found in the Fermi-LAT data.
Crnogorcevixc, Linden, 2311.14611

We set constraints on the DM annihilation cross section, including the
uncertainties from the | factor.

B_[IDgIU(J)_Ioglo(Jmeu)]2 [20°2
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Strict constraints from Fermi-LAT
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¢ Compared with other experimental constraints, the observation of UMa 111
set very strict constraint on the DM annihilation cross section.
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Expected limits from CTAO

” CTAO performance for bb annihilating DM
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Radio signals from DM in dSphs

# Electrons and positrons from DM annihilation can generate a broad radio

spectrum through the processes of synchrotron radiation and inverse
Compton scattering.

# It is crucial to calculate the electron and positron spectrum by solving the
diffusion equation.

d on,
ot oOE

on,
oE

:V[D(E, r)va”f] 42 [b(E,r)

OE| " OE ] +O(E.r)

D(E): diffusion coefficient D(E) = Dy(E/E,)"

b(E, r): energy loss term  b(E,r) = bic(E) + by (E.T) + beoui (E) + bprem (E)
Q(E, r): DM source term

p(r)*, L dN,
dE




Radio signals from DM in dSphs

4 The electron and positron spectrum is given by

on, 1
0E  b(E,r)

G(r, E, E’): Green function encompassing the diffusion and energy loss effects

/ " dE'G(v,E, E)Q(E,r)
E

# Radio flux density is given by (using package RX-DMFIT)

dl my, dn
Sw)= [ dQ — dE2—(E,r)(P,,, (v, E, P,-(v,E
) / /4/ < (E. 1)(P (. E. 1) + Prc(v. E))

# Predictions significantly depend on the magnetic field and diffusion model in
astrophysical systems.

These two factors are unclear in dSphs.



Impact of astrophysical factors
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SKA sensitivities

Dashed: Inverse Compton, Solid: Synchrotron
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Optimistic
+# We consider 100 hour SKA observation at the low band and four mid bands.
# The uncertainties from the density profile are considered.

# The sensitivities to synchrotron signals can surpass the current constraints
f or the lep tonic channels. Zhang, Bi, Chang, Yin, Zhao, 2409.12414



SKA sensitivities

Dashed: Inverse Compton, Salid: Synchrotron
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# We consider 100 hour SKA observation at the low band and four mid bands.

# The uncertainties from the density profile are considered.

# The sensitivities to synchrotron signals can surpass the current constraints

for the leptonic channels.

Zhang, Bi, Chang, Yin, Zhao, 2409.12414



We should be cautious ...
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Zhao, Bi, Lin, Yin, 2406.16769

# The sample of member stars used to determine DM density is very limited.

# If the star with largest velocity outlier is removed, the DM density profile is
poorly determined. The corresponding J-factor has a much smaller median
value and a very large uncertainty log,,J = 17.7*33 .



Summary

The recently discovered system Ursa Major I1I may be the faintest and
densest dwarf stellate galaxy in the Milky Way. It is a very promising
target for DM indirect detection

We determine the DM density profile in the UMa I1I through a Jeans analysis
and obtain a large J-factor.

We set strict constraints on the DM annihilation cross section based on
the Fermi-LAT gamma-ray results, and investigate the SKA sensitivities to
the radio signals.

It is imperative to note that variations in kinematic data may lead to a
significant reduction in the inferred DM content in UMa II1. More
observations are needed.



Thank you
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