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The core-cusp problem

NFW 10° Mg
NFW 10* Mg,
NFW 10! Mg
coreNFW
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Read et al. 2019

Cold dark matter (CDM) simulations predict
dark matter halos with inner slopes close to -1

(cusp)

Observations of dwarf galaxies sometimes
Indicate inner density slopes close to O (core)

Possible solutions:
* alternative dark matter models (e.g. SIDM, FDM)
* baryonic physics (e.g. stellar feedback)
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The systematics behind dynamical modeling

* The deviation from steady states can resulting In

under/over-estimated inner density profile 5
(e.g. Genina et al. 2018; Wang et al. 2022) —
D:j:"
*  M(< Rygip) is not sensitive to mild deviations from >
steady states =
s
* Joint modeling of multiple populations provides .
multiple measured M(< Rygir), hence may bring ~ B T
better constraints 2.6 2.8 3

logyy [Ruarl (PC)
Walker & Penarrubia 2011
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We combine data from:

* DESI Milky Way Survey (MWS)

 Walker et al. 2023

Object Niot Nprsi Nwos
Draco 407 96 374
Sextans 440 240 368

Ursa Minor 1046 1003 416

_ GUIDE7 &, . ....

\--- AT

8.5 ephignal,

®.* GUIDE0”

WA R G




X DARK ENERGY
PECTROSCOPIC
s | 3. Method

LN SWONLS N
U.S. Department of Energy Office of Science

Single-population model

Jeans Anisotropic Multi-Gaussian Expansion (Jam) modeling
(e.g. Watkins et al. 2013; Zhu et al. 2016)

* Axis-symmetric Jeans Equations

* Multi-Gaussian Expansion (MGE): each
Gaussian component has analytical solutions 3

Total profile

~

)]
—

Different
components

* Solutions to velocity moments are first
obtained in the intrinsic frames: can fit any
functional form of the potential model

log [." (Lape 2

1) = 1

* Then they are transformed to the observed
frame (through the inclination angle) to be 1 S L W VI Y

|
0 3 10 15 20 25 30 35 40

compared with observations 2'[arcmin]
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Chemodynamical model

Extension of the single-population model to multi-population cases
(Zhu et al. 2016)

* Multiple populations impose stronger constraints on inner slopes of dark matter halos
* Two populations: a metal-rich and a metal-poor population
* Joint modeling of spatial + metallicity + kinematical properties

* Based on the posterior distribution, each star has a probabillity to be classified as the metal-rich or
metal-poor population-
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Properties of two populations: Draco

surface number density profile

—— Metal-poor
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* Metal-poor populations (blue):
more spatially extended

* Metal-rich populations (red):
more centrally concentrated



DARK ENERGY
SPECTROSCOPIC
! INSTRUMENT 4 . Res U |tS

SWad1s NT
U.S. Department of Energy Office of Science

Properties of two populations: Draco

surface number density profile line-of-sight velocity dispersion profile
R’ [kpc] R’ [kpc]
0.0 0.5 0.0 0.5
] | ' ' I ] ' ' ' I
10-2 4 o ﬁi:?g : e Metal-poor major : e Metal-rich major
3 — - 1 . .
: 15.0 17— Model major 15.0 ; Model major
‘T‘U 103 0 12.51 © 12.51
2 € ] - |
< =~ 10.01 =~ 10.01
S o S) = S Er
7.5 1 : ! - 7.51
105 — . . . — A\ 50‘ - 50‘
102 —r —r
X' [pc] 0 10 20 0 10 20
R’ [arcmin] R’ [arcmin]

* Metal-poor populations (blue):

more spatially extended kinematically hotter with negative gradients in velocity dispersion
* Metal-rich populations (red):

more centrally concentrated kinematically colder with flattened velocity dispersion profiles
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Properties of two populations: Draco

surface number density profile line-of-sight velocity dispersion profile
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The nearly factor of 2 difference may
reflect the deviation from the steady-state!
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(Black, red, blue dashed vertical lines: Ry 41 Of the total, metal-rich, and metal-poor populations)

* Results of the single-population and two-population chemodynamical models are fully consistent

* Dark matter density profiles are best constrained around the half-number radii of tracer populations
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4. Results

Comparison with previous works

NFW 10° Mg
NFW 101 Mg
NFW 10" Mg
coreNFW

r(kpc)
Read et al. 2019

Read et al. 2019 use ppp (150pc) as a proxy of
the inner density slope y

A single measurement of ppp(150pc) is
sufficient to differentiate the models,
Independently of the halo mass
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Comparison with previous works
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4. Results

Comparison with previous works
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Draco:

Our result agrees well with
Read2019 and Hayashi2020
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Comparison with previous works
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Ursa Minor:

* Discrepancy is caused by the
difference in the sample of
member stars used

* We can reproduce previous results
If using their sample of member
stars
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Comparison with previous works
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Ursa Minor:

* Discrepancy is caused by the
difference in the sample of
member stars used

* We can reproduce previous results
If using their sample of member
stars
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Comparison with previous works
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Draco Sextans Ursa Minor

Sextans:

* Discrepancy is caused by
difference in the sample of
member stars used

* And by different model
assumptions:
This work and Hayashi2020:
axis-symmetric Jeans analysis
Read2019:
spherical Jeans analysis
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Comparison with previous works
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Sextans:

* Discrepancy is caused by
difference in the sample of
member stars used

* And by different model
assumptions:
This work and Hayashi2020:
axis-symmetric Jeans analysis
Read2019:
spherical Jeans analysis
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Comparison with previous works
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Draco Sextans Ursa Minor

* The intrinsic velocity dispersion
profiles vary for different
member star samples

* The previous samples have
higher intrinsic velocity
dispersions in the central
region
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Comparison with previous works
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4. Results

Revisit the core-cusp problem
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* Read2019 finds a negative

correlation between ppy (150pc)
aﬂd M*/MZOO
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Pom(150pc)[108M o kpc 3]

Revisit the core-cusp problem
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* Read2019 finds a negative
correlation between ppy (150pc)
and M, /M5,

- - supporting stellar feedback
as the main mechanism of
explaining the core-cusp problem
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Revisit the core-cusp problem

Y Read+ 2019
‘ Hayashi+ 2020

@ Thiswork (DEsi+w23) | * Read2019 finds a negative
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* However, similar trend is not clearly
seen In Hayashi2020
(Green diamonds)
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4. Results

Revisit the core-cusp problem

N W
Ul o
1 1

N
o
1

=
(@)
1

opm(150pc)[108M o kpc—3]

o
o

Y Read+ 2019
‘ Hayashi+ 2020

g

Sextans '

@ This work (DESI+W23)

1072

* Adiversity of ppy(150pc) , or the
Inner density slope y

* The currently best constraints are

still sensitive to the model
assumptions and to the sample
selection effects
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* The differences are due to different dark matter density
profiles and different truncation radii



MW Stellar halo is twisted A su=
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Yaw angle: angle between projection of the major axis of stellar halo within the disc plane and the GC-sun line
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_ _ _ _ Han et al. 2022
Pitch angle: angle between MW disk and major axis of stellar halo

The more inner stellar halo is aligned with the disk, whereas the outer halo becomes perpendicular to the disk



MW Stellar halo is twisted

Yaw angle: angle between projection of the major axis of stellar halo within the disc plane and the GC-sun line
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Pitch angle: angle between MW disk and major axis of stellar halo
The more inner stellar halo is aligned with the disk, whereas the outer halo becomes perpendicular to the disk



Anisotropy of stellar halo induced by GSE/LMC

A few well-known over-dense regions: Associated with GSE N-body simulation prediction
20<rsc<30kpc Garavito-Camargo et al. (2019) :

10<rgc<20kpc
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Dynamic fraction

led to over-density

(transient wake)

Corresponds to
LMC collective

‘ wake.
Pisces The density contrast
65 0o 05 at different distances
Pdata — Pdata Is highly anisotropic.
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Anisotropy of stellar halo induced by LMC
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> Milky Way dwarf spheroidal galaxies
We combine data from DESI MWS and previous observations for three dwarf spheroidal
galaxies: Draco, Sextans and Ursa Minor

* We apply the axisymmetric Jeans Anisotropic Multi-Gaussian Expansion (JAM) modeling
approach:
* single-population Jeans model
* multiple population chemodynamical model

* We find a diversity of ppy(150pc) , or the inner density slope ¥

* Qur results indicate that currently best constraints are still sensitive to the model
assumptions and to sample selection effects

» Milky Way stellar halo

* We find the inner stellar halo is oblate and aligned with the Galactic disc, whereas the outer
stellar halo becomes prolate and perpendicular to the disc
* We find evidences for the anisotropy of the stellar halo induced by GSE/LMC
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