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DArk Matter Particle Explorer (DAMPE)

17th Dec. 2015

@Jiuquan
« Dark Matter
« Cosmic Rays i
= Gamma Ray§ +~

L L] L] L] L)

- Acceptance

Exposure [m” sryr]
T
illAL 2 A L

y v’l’ R
i
/ J
10 "~ f ?
- ‘ DAMPE (0.3 m"sr) E
[ | CALET (0.1 m'ar) ]
s \ AMS.02 [0.05 m'sr) 4
10 %10 “Foza
Time [yr]

Plastic Scintillator Detector{PSD) Silicon Tungsten Tracker(STK)
»( anticoincidence 7' convertor, particle track
» Z-measurement r Z-measurement

BGO Calorimeter(BGO)
» Calorimeter (32X, &1.64,)
»e/pseparation
# Trigger primitives

Neutron Detector(NUD)
»efpseparation

- Payload:
1.4 Tonn

* Power:
~ 400 w

2025/10/26

% EZS, IMPCAS



| DAMPE Charge measurement

Bethe-Bloch Equation:
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) Charge Reconstruction

Charge Readout Correction
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I Charge Reconstruction
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After PSD charge correction, Fe-charge value located in 26, Ca in 20.
Charge resolution improve ~10%.
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ISub-Fe and Fe .
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® Large Abundance and Fragment Crose section. he h : fth
® The most effective probes of nearby cosmic-ray VO Measurement the hardening of the

sources. subFe/Fe (hardening of B/C) or the

® The origin, acceleration, and propagation of bump feature of secondary nuclei.
heavy-nuclei cosmic rays.
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sub-lron Energy Deposition and Charge
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Sub-Fe and Fe has similar Energy deposition ratio and charge resolution.
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} Flux of sub-Iron elements
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Ongoing

> DAMPE sub-iron deposited spectrum find the bump structure.

> First-time measurement of the bump structure of secondary cosmic rays.

> The ratio of sub-iron and iron is the most powerful probe to investigate heavy nuclei
propagation, and help us understand the origin of the bump structure.
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J Fe Spectrum yé
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» Select Charge Range : 25.5 — 27.2
» Contamination of Fe main from Mn.
> All Contamination lower than 3.2%
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J Iron Spectrum
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) Efficiency calibration
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} Iron Spectrum
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J Nickel Spectrum A

e The differential flux of nickel from 10 GeV/n to 2TeV/n was obtained.
e A similar structrue to CALET, but an absolute value shift
e A single power law is used to fit, withy = -2.60+0.03
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l Nickel and Iron Spectrum Ratio
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The nickel to iron ratio can be approximated by a constant fit 0.057.
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I Zn(Zinc) Spectrum é:—%é
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] Origins of the Elements S

 S-process |

Bl Mass known

Pb (82) — [ Half-life known
= [[] nothing known
| p-process p—
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Ca (20 | Supernovae I
stellar burning Foree=y Rays |
21) 0 28 I neutron star mergers

Grawe et al., Rep. Prog. Phys. 70 (2007) 1525

protons

k-3
neutrons

The relative abundances of Ultra-iron reveal production mechanisms (r or s process) and sources.
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Origins of the Elements

2025/10/26
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J Origins of the Elements

10°

10°

Experiment Effective Acceptance Observation Time Energy Range

(d)

Atomic abundance, Si = 10°

e Solar system

o Galactic cosmic rays

CRIS >8000 0.1-1 GeV/u
Super-TIGER 55 0.8-10 GeV /u
DAMPE >3000 3 GeV-100 TeV
Atomic number, Z
Broader energy range.
Largest event collection at high energies.
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J Ultra-lron Nuclei Abundances

Relative abundance of ultra-Iron nuclei (norm. to Iron)
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 Summary O

>»We obtain a preliminary sub-Fe flux, The Energy
Range bigger than previous. Need more MC data.

»>Iron Spectrum show a bump structure, in low
Energy Range Match Well with AMS-02.

»>Ni Spectrum up to 2TeV/n was obtained, Zn Charge
Peak observed in Charge Spectrum.

»Preliminary Ultra-lron Spectrum obtained. Match
wee with Super-Tiger

Thanks for your attention



