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. Excess of galactic diffuse emission

2. Anomalies in direct measurement of secondary cosmic rays (CRs)

3. Effective confinement of CRs as an unified explanation
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Gamma-ray counts map

Point source contribution

Dust opacity map (gas column)
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Inhomogeneity in large scale, both in spectra and in densities:
*Softening towards outer Galaxy
*Peak of density at 4-6 kpc ring
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https://arxiv.org/abs/2509.26290
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* After considering HIl component the CR distributions looks ‘“more
homogeneous”

* The former inhomogeneity is simply due to the mixing of “true” diffuse
(sea) component with hard “source” (island) regions
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Phys. Rev. Lett. 131, 151001 (2023)
"Excess’ revealed in multi-TeV band
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A new component in GDE? From Pulsar halos!?
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B NDARD CR PROPAGATION FICTTTESS

Diffusion in an extended halo

0.4
*Primary injection spectrum (e.g, from DSA) ] -
Q (E) ] 0.2+ ]
* Confinement time (leaky box or diffusion model) 5 Nt**»*u*
S "l
T(E) ~E "0 0.1 Hx)\u\ul
* Steady state primary spectrum 0.06 | 7
N(E) ~ Q(E)T(E) ~ E A (Y+O 0.05
P - 0.04 AMS-02 results
* Steady state secondary spectrum 0.03 0 7 e
IS ~ Q(E)T2(E) ~ E "~(Y1+20) Rigidity [GV

* Secondary/primary ratio ~ E*~0 (B/C observations)

N consistent below | eV
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Significant excess require modification to the “standard” model
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* Observed by Fermi LAT, ARGO-YB| & HAWC
* extended emission up to more than 50 pc (150 pc from LHAASO)
* Hard spectrum in GeV band, softening above TeV



GALACTIC CENTER (H

£S5 201 6)

Galactic Latitude (degq.)
Galactic Latitude (deq.)

01.0 00.5 00.0 359.5 359.0
Galactic Longitude (deq.)

* Also reveal extended emission and hard spectrum (index ~ 2.2)
* Diffuse emission up to more than |50 pc
* GC region harbors Arches, Quintuplet and Nuclear cluster
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* CR distribution derived by gamma-ray
profile and gas distributions

* All four sources (WdI,Wd2, Cygnus
cocoon, GC) show |/r distribution of
CRs

* |n diffusion, |/r profile implies a
continuous injection, multiple SNRs
or stellar winds

* Slow diffusion required by the total
energy budget

Aharonian, Yang & de ona Wilhelmi Nature Astronomy(2019) 3,561
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Stage 1 (t < 10 kyr) Stage 2 (t ~ 10 - 100 kyr)
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* Central continuous injection of CRs up to PeV N i

*Slow diffusion near the source (/100 of fiducial value)
* Harder spectra from Molecular clouds

Slow diffusion Inside pulsar Halos



SLOW DIFFUSION REGIONS

* Possible energy independent escape from Source regions (normal assumption if CR streaming

dominate the magnetic turbulence, e.g. Krumholz 2019)

1039 Arp 220
M&2
NGC 253

Milky Way

104Y

D [em? s~ 1]

10%°

1027 4

E CR [G (}V]

10Y 10! 10> 102 104

10-10
N/‘\
‘s 10" |
Q b
%, Cygnus
2 |
2 10" - gamma spectra
@ |
&
Fermi LAT —#—
10713 | ARGO —=—
| HAWC —&—
LHAASQ IKMZA .: M l. ;: 2 PR x 1 P | 2 X P |
10° 102 10° 10 10° 10°
Energy(GeV)

* Effective confinement (slow diffussion)

of CR near accelerators
* energy independent below ~10 TeV,
from Cygnus spectra
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it UUSE INEUT RING FELI

- ' TE=
Can be tested by next generation
neutrmo telescopes such as
~HUNT
all flavor neutrino flux

energy, GeV

Yang and Aharonian, Phys. Rev. D | | |, 083040



e PICTURE OF CR PROPAGATIE SN

1010 [
c\"’g\ 101 |
~, ' Cygnus
2 10 gamma spectra
Fermi LAT —#—
1077 F ARGO —&—
. HAWC —®&—
LHAASOKM2A —@— =
10! 10° 10° 10* 10° 10°
Energy(GeV)
* Effective confinement (slow diffusion) of CR near
“active” accelerators
*Energy independent below ~10 TeV, from Cygnus _,
spectra :
* Accumulation of extra component of “grammage” ;

* Can account for both B/C and diffuse gamma

Yang and Aharonian, Phys. Rev.
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L ONCLUSIONS

* Gamma-ray observations bring new hints for CR propagation.

* Slow diffusion near source region in consistency with measurement of extended
gamma-ray sources

* Can explain both the “excess” in GDE and “anomalies™ in secondary CRs



