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• Astroparticle physics enters precision era
• Nuclear cross sections limit accuracy

• Propagation models
→ production secondary CRs

• Measurement nuclei fluxes

Motivation
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• Astroparticle physics enters precision era
• Nuclear cross sections limit accuracy

• Propagation models
→ production secondary CRs

• Measurement nuclei fluxes

Cross section affects acceptance!

Motivation (space)

PRD: 10.1103/PhysRevD.109.L121101

Flux of proton+helium

Uncertainties

Statistics
Φ 𝐸 → 𝐸 + Δ𝐸 =

𝑁
𝒜!"" ⋅ Δ𝐸 ⋅ Δ𝑡

Hadronic model

https://doi.org/10.1103/PhysRevD.109.L121101
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• Astroparticle physics enters precision era
→ E.g. helium flux measurement without

unfolding by LHAASO 
• Nuclear interaction models

dominate accuracy of the result

Motivation (ground)
Helium flux by LHAASO

“The largest systematic uncertainty is associated with the hadronic interaction model used in 
the simulation of shower development in the atmosphere and detector response.”

arXiv.2511.05013

https://doi.org/10.48550/arXiv.2511.05013
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Motivation

Inelastic cross section at TeV energies and above
• Accelerators: proton-proton, proton-lead  ( )
• Ground-based CR experiments: proton-air  ( )

Log(z)

Incident
nucleus

Proton Lead

Iron

Proton

Air

Measurements available only for proton.
Extrapolation leads to >20% uncertainty on 
nucleus cross section of other ions

Solution: Measurement with DAMPE!

?
Oxygen

Carbon

Helium
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• Also called Wukong
• Satellite launched in December 2015
• Sun-synchronous orbit

(Altitude - 500 km, Period - 95 minutes, Oriented toward zenith)

• Records ~5×10! events per day
• Large effective area and deep 

calorimeter (32 radiation lengths)
• Electrons / photons:

5 GeV to 10 TeV ; acceptance ~0.3 m! sr
• CR ions:

10 GeV to ~500 TeV; acceptance  ~0.1 m! sr

The DAMPE experiment
Collaboration between :
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• Layered design with 4 sub-detectors:
• Plastic scintillator detector (PSD)
→ Charge

• Silicon-Tungsten tracKer-converter (STK)
→ Tracking + charge

• Calorimeter (BGO)
→ Energy

• NeUtron detector, NUD
→ Electron/proton separation

The DAMPE experiment

NUD
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• Layered design with 4 sub-detectors:
• Plastic scintillator detector (PSD)
→ Charge

• Silicon-Tungsten tracKer-converter (STK)
→ Tracking + charge

• Calorimeter (BGO)
→ Energy
→ Inelastic interaction point

• NeUtron detector, NUD
→ Electron/proton separation

The DAMPE experiment

NUD
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Proton and Helium-4
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Selection

1. MIP trigger
2. Pre-cuts → contained events
3. Criteria:
1. Basic quality cuts
2. Remove electrons
3. Interact after reaching calorimeter
4. Fall P or He charge window

⇒ > 85% signal efficiency,
≲0.2% background

Good
Reject

10.1016/j.astropartphys.2022.102795

https://doi.org/10.1016/j.astropartphys.2022.102795
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Methodology

• Measurement:
• Inelastic hadronic cross section
• Proton and helium primary
• Bi!Ge"O#$ target (calorimeter)

Calorimeter with
308 Bi3Ge4O12 bars
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Methodology

Interaction point

• Measurement:
• Inelastic hadronic cross section
• Proton and helium primary
• Bi!Ge"O#$ target (calorimeter)

⇒ Determine depth of
interaction point

Calorimeter with
308 Bi3Ge4O12 bars
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Interaction depth classifier

• Cross section ⟷ point of inelastic interaction
• Gradient boosted decision tree (XGB)

• 16 output classes:
• Before calorimeter

• ~80% accuracy
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• One per layer (14x) • After calorimeter

Training Accuracy Accuracy Bias
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Results - Proton
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This work

Fly’s eye (air, 1984)

Akeno (air, 1993)

KASCADE (air, 1994)

Yakutsk (air; 1999, 2011)

ARGO-YBJ (air, 2009)

EAS-TOP (air, 2009)

Pierre Auger (air, 2015)

Tien Shan (air, 2013)

Telescope Array (air, 2020)

• 19 GeV – 10 TeV
• Below model predictions
• Excellent agreement with 

ground-based CR observatories
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Results - Helium
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• 5 GeV/n −3 TeV/n
→ First result at TeV!

• Within model predictions
• Good agreement

with previous results



• Effective detector acceptance depends on cross section:

• Our results significantly
improve Geant4-FLUKA
agreement
• Minor effect for proton
• Major effect for helium
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Effect on flux normalisation
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Φ 𝐸 → 𝐸 + Δ𝐸 =
𝑁

𝒜'(( ⋅ Δ𝐸 ⋅ Δ𝑡
• Higher cross section
→ lower flux (and vice versa)
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Carbon and Oxygen
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Selection

1. High-energy trigger
2. Pre-cuts → contained events
3. Criteria:
1. Basic quality cuts
2. Energy > 50 GeV
3. Interact after reaching calorimeter
4. Charge signal (PSD & STK)

⇒ Background: 0.1~0.2%

Good
Reject

10.1016/j.astropartphys.2022.102795

https://doi.org/10.1016/j.astropartphys.2022.102795
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Methodology
• Monitor change in charge to see if a nucleus interacts
• Survival probability  ↔ cross section:
𝜖 = 𝑁#!

$%&/𝑁#"
$%& = exp(−𝑛 ⋅ Δ𝑙 ⋅ 𝜎) ⇒ 𝜎 = 𝜎%& ⋅

'( )!"#"
'( )$%

22

Cross Section Measurement
• Point of nuclei fragmentation → Cross section
• Determine whether the nucleus 

survives through a layer by 
changes in charge Layer 1

Layer 2

λsur(E, ⋅l) = Nleave(E, ⋅l)
Nenter(E, ⋅l)

= exp(−n Δ ⋅l Δ ζBGO(E))

E : Energy, ⋅l : Path length in BGO

ζFD
BGO(E, ⋅l) = ζMC

BGO(E, ⋅l) Δ ln(λFD
sur (E, ⋅l))

ln(λMCsur (E, ⋅l))

• Survival rates of a layer (The 
ratio of particles leaving the 
layer to those entering it.):

• Then calculate the cross 
section:
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• Survival rates of a layer (The 
ratio of particles leaving the 
layer to those entering it.):

• Then calculate the cross 
section:
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Results - Carbon

• Kinetic energy
(fixed target):
200 GeV − 10 TeV
→ First results at TeV!

• Excellent agreement 
with model predictions
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Results - Oxygen

• Kinetic energy
(fixed target):
200 GeV − 10 TeV
→ First results at TeV!

• Excellent agreement 
with model predictions
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Conclusion & outlook

• Inelastic cross section measurement
→ Improves accuracy ion fluxes

• Published this year!
• Proton and Helium-4

• Carbon-12 and Oxygen-16

→ First measurement at these energies for He, C, and O!
• Outlook:

• Extend approach to other ions

PRD: 10.1103/k2wp-c3hb

PRD: 10.1103/PhysRevD.111.012002

https://doi.org/10.1103/k2wp-c3hb
https://doi.org/10.1103/k2wp-c3hb
https://doi.org/10.1103/k2wp-c3hb
https://doi.org/10.1103/PhysRevD.111.012002
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Backup slides
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Proton-helium: Method

• Cross section ⟷ point of inelastic interaction
• Modify MC cross section

until it matches data:

• Compare MC (𝛼5) to data 6!
6"#"
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Carbon-oxygen: Method

• Accounting for path-length difference
due to different incidence angles

23

Cross Section Measurement
• Inelastic hadronic cross sections of 

carbon on BGO target with varying 
path lengths

Carbon

normal incidence PL = 25 mm

• Systematic uncertainty 
• Main contributions: model difference (G4 

& FLUKA), statistic of MC, identification of 
ionization, BGO charge efficiency

Prelim
inary

Prelim
inary

• Normal incidence: 25 mm
• 3 bins are considered:

[25,26] ; [26,27] ; [27,28]
• Final result by averaging

25



• Statistical uncertainty dominates in last bin
• Systematic uncertainty:

• Classifier
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Proton-helium: Uncertainties
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• Statistical uncertainty dominates in last bin
• Systematic uncertainty:

• Charge selection
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Carbon-Oxygen: Uncertainties

• ID interaction • Hadronic model
• Background • Unfolding • Energy scale
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(b)

FIG. 5: Illustration of statistical and systematic uncertainties in the measurement of carbon and oxygen inelastic
hadronic cross sections.

This facilitates their direct application in ground-based
cosmic ray observation experiments [55].

σFD
air = σFD

BGO · σ
Geant4
air

σGeant4
BGO

(8)

By incorporating all available samples, we significantly
diminish statistical uncertainties, leading to more reli-
able final results. The experimental measurements ex-
hibit excellent agreement with the cross section model
employed in the Geant4 simulation software. This model
is based on the Glauber-Gribov nucleus-nucleus cross sec-
tion parameterization [56]. The consistency between ex-
perimental data and the model enhances confidence in
the reliability of the model.

In a similar manner, the oxygen component is divided
into samples, with each evaluated individually to deter-
mine the corresponding cross sections. For oxygen, our
results provide valuable contributions to the measure-
ment of cross sections on a BGO target, covering the
kinetic energy range from 200 GeV to 10 TeV as shown
in Figure 7 (see Table 2).

In this study, we measured the interaction cross sec-
tions of high-energy cosmic ray carbon and oxygen with
the BGO calorimeter over an energy range of 200 GeV
to 10 TeV. Our results indicate that, within the uncer-
tainties, the experimental data agree with the models of
the Geant4 and FLUKA, suggesting that these models
are reasonably reliable in describing interactions between
high-energy CRs and detector materials. This technique
holds potential for application to the study of other nu-
cleis in future work, particularly in precision measure-
ments of charge-changing processes.

It is worth noting that the AMS-02 experiment also
measured the hadronic interaction cross sections for var-
ious nuclei using a carbon target [30, 57]. Their measure-

ments exhibit systematic biases compared to the predic-
tions of Geant4. This discrepancy may arise from differ-
ences in the types of cosmic ray particles, target material
composition, detector structure, or data analysis meth-
ods.

V. SUMMARY

This investigation focuses on the inelastic hadronic in-
teraction cross sections in BGO using high-energy CR
data collected by DAMPE. The results reveal that the
measured inelastic hadronic cross sections for carbon and
oxygen nuclei are in excellent agreement with the Geant4
and FLUKA model used in the simulation software,
across the energy range from 200 GeV to 10 TeV. By
leveraging CRs as a “natural accelerator,” this study suc-
cessfully achieves measurements of the inelastic hadronic
interaction cross sections of high-energy carbon and oxy-
gen nuclei on a BGO target in a space-based calorimetric
detector. This work also provides a solid experimental
foundation for high-precision assessments of cosmic ray
fluxes.
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Proton-helium: Energy dependence

• Cross section measured as
function of kinetic energy per nucl.
• Bin events in total energy

deposited in calorimeter
• Determine corresponding

kinetic energies from MC
• Fit Landau+Gaussian
→ peak: reference value
→ width: uncertainty

0.00

0.02

0.04

0.06

N
or

m
al

is
ed

co
un

t

Proton

8.0 GeV - 19 GeV

19 GeV - 43 GeV

43 GeV - 0.10 TeV

0.10 TeV - 0.32 TeV

0.32 TeV - 1.0 TeV

1.0 TeV - 3.2 TeV

3.2 TeV - 10 TeV

101 102 103 104 105 106

Kinetic energy (GeV)

0.00

0.02

0.04

0.06

N
or

m
al

is
ed

co
un

t

Helium

6.0 GeV - 10 GeV

10 GeV - 32 GeV

32 GeV - 0.10 TeV

0.10 TeV - 0.32 TeV

0.32 TeV - 1.0 TeV

1.0 TeV - 3.2 TeV

3.2 TeV - 10 TeV

28



2918/12/2025 IWCRDDP - DAMPE cross section for CRs - Paul Coppin

Proton-helium: Lepton rejection

• Rejection of electrons (and positrons)
• XTRL variable has been developed

(see doi: 10.1038/nature24475)
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https://www.nature.com/articles/nature24475


• DAMPE can measure charge but not mass
• No way to distinguish proton from deuteron
• Ratio Φ 2H /Φ 1H has been measured by AMS
• Accounts for few percent of flux ⇒≤ 0.9% effect on measurement
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Deuteron contribution

doi: 10.1103/PhysRevLett.132.261001

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.261001


• DAMPE can measure charge but not mass
• No way to distinguish helium-3 from helium-4
• Ratio Φ 3He /Φ 4He has been measured by AMS
• Accounts for few percent of flux ⇒≤ 1.2% effect on measurement
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Helium-3 contribution

Extrapolation AMS
fit to higher energies

10.1103/PhysRevLett.123.181102

https://link.aps.org/doi/10.1103/PhysRevLett.123.181102
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Proton: Other target materials
Our measurement is for a Bi4Ge3O12 target
Measurements not for BGO are scaled:  𝜎*+,-.*/01.2/𝜎345/01.2

Three models considered: EPOS-LHC, QGSJetII-04, DPMJET3
→ 1-3% difference, no effect on interpretation result
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Helium: Other target materials
Our measurement is for a Bi4Ge3O12 target
Measurements not for BGO are scaled:  𝜎*+,-.*/01.2/𝜎345/01.2

Three models considered: EPOS-LHC, QGSJetII-04, DPMJET3
→ DPMJET3 & EPOS-LHC very close, QGSJetII-04 higher
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