
Introduction of the
HERD Offline Software

Teng LI on behalf of HERDOS developers
紫金山天文台

2025.5.9

Overview of HERDOS

 The Task of HERDOS

 To fulfill official offline data processing tasks, i.e. detector simulation,
digitization, calibration and reconstruction

 Provide a common platform for users to develop and embed analysis
code

2

SNiPER Framework

Event Data
Management

Detector Description
Management

Common
Services

Software
Validation

Build &
Installation

Simulation Calibration Reconstruction Data
Analysis

Core
Software

Computing
Platform

Scientific
Data Management

Motivation of the framework

 The motivation of developing the framework

 To serve as the common software platform for the entire offline data processing
 Provide common functionalities for data processing and make

developers/users focusing on their applications and analysis

 Improve development efficiency, reduce development difficulty and improve
the software quality

 Improve the reliability of all physical results

 Fulfill the specific requirements from HERD
 The software should be light-weighted, yet complete in every part and

of excellent performance

 Multi-threading is vital (for the simulation of PeV heavy nucleons)

 Flexible and consistent detector description

 Capable of supporting complex reconstruction and calibration jobs

 Should take the long life-cycle into account
3

The Underlying Framework
SNiPER

Underlying Framework: SNiPER

 The SNiPER Framework

 Designed and developed as common framework for HEP experiments
(since 2012)

 Maintained by 10+ developers from IHEP, SDU, SYSU etc.

 Adopted as underlying framework for JUNO, LHAASO, nEXO, STCF etc.

 Provide common functionalities from HEP data processing tasks

 Key features of SNiPER

 Light-weighted, with minimal dependencies of external libraries

 High cohesion & low coupling design

 Flexible user interface based on Python binding

 Flexible data processing chain

 Multi-threading support

5
reference: J. H. Zou et al J. Phys.: Conf. Ser. 664 (2015) 072053
 J. H. Zou et al EPJ Web Conf. 214 (2019) 05026

Underlying Framework: SNiPER

 Application layer:
 Developer can develop specific algorithms and tasks for specific requirements

 Core layer:
 Core functionalities such as event data management, detector description

management ...

 UI layer:
 Built based on python-binding 6

Data Processing Procedure with Decoupled Data

7

Tasks can be configured to run specific processing procedures, e.g.
• Simulation only
• Digitization only
• Reconstruction only
• Simulation + digitization
• Simulation + digitization + reconstruction
• Anything + customized analysis code

Simulation

Digitization Reconstruction

Sim. DataTransient Event Store

Rec. DataTransient Event StoreSim. Data

Digitization Reconstruction

User DataTransient Event StoreSim. Data

Analysis

Configure Flexible Data Processing Procedure

8

Flexible processing chain can be built on demand

Other than sequential workflow, complex processing procedure is also possible
(branching/ jumping/ concurrent)

• ‘Steering’ of reconstruction algorithms
• Analysis with multiple input streams
• Mixing of multiple MC samples
• ...

Input Data
Stream

SubTask 1
(Gamma Rec)

SubTask 2
(Heavy Ion Rec)

SubTask 3
(Others)

Alg1 Alg2

Alg1 Alg2 Alg3

......

PID

User Interface

 High level Python module is developed to better steer HERDOS job

9

• Handle the creation of HERDOS components
• En-capsule common configurations and expose

properties to command line interface
• Provide detailed helper message
• One can quickly get started without knowledge

of Python and HERDOS

User Interface

 High level Python module is developed to better steer HERDOS job

10
Properties can be set with command line interface

Event Data Management

Event Data Management: Requirements

12

 Event data management is the most crucial part of the framework

 Provide tools to define the Event Data Model (EDM, Data Object classes)
 The definition of physics event data (MC particles, hits, readouts,

tracks, clusters, reconstructed particles)
 Construct relationship between EDM objects

 Provide automatic memory management mechanism

 Provide persistent and transient EDM conversion

 Provide backward and forward compatibility，very important for long
time running of HERD.

 Guarantee thread-safety

Event Data Model (EDM) Base on Podio

13

 Based on YAML definition, generate EDM C++ code accordingly

Developers only need to write yaml file to define data objects

Implementation details can be ingored (thread safety, garbage collection, relationship,
multiple versions compatibility, etc ..)

Tedious and error-prone work can be avoided

Auto Code Generation
During

Compilation

Defined EDM

14

Global:
• MCEvent
• Event
• MCParticle
• TrackingSimHit
• GlobalTrack

Calorimeter:
• CaloSimCell
• CaloDigiCell
• CaloRecoCell
• CaloClusters
• CaloShowerAxis
• CaloPDDigiCell

FIT:
• FITDigiCell
• FITRecoCell
• FITCluster
• FITTrack

PSD:
• PSDDigiCell
• PSDRecoCell

SCD:
• SiliconDigiHit
• SiliconDigiCell
• SCDCluster
• SCDTrack

TRD:
• TRDDigiCell
• TRDRecoCell

Trigger:
• FastTrigger
• Trigger

All EDM classes defined in one yaml file (DataModel/EventDataModel/datalayout.yaml)

Official EDM classes can be extended on approval
Users could define their own EDM classes just for individual-usage

Transient Event Store

 Transient Event Store (TES) is where EDM objects are stored in memory, shared
by all user Algorithms

 User Algorithms access event data via collections, through DataHandle
(or the getROColl and getRWColl macros)

15

par par par ...
mcpars

hit hit hit ...
scdhits

hit hit hit ...
calohits

digi digi digi ...
scddigi

trk trk trk ...
scdtrack

cluster cluster ...
scdcluster

TES

event

mcpars
scdhits

calohits
scddigi
scdtrack
scdcluster

metadata

DetSimAlg DigiAlg RecAlg

GET
Collection

CREATE
Collection

Data I/O

Examples of defining, accessing EDM in backup

Data Input / Output Services
 Data input/output is implemented with PodioInputSvc and PodioOutputSvc

16configure data I/O in configuration file

• Options like input file, output file, collections to
be wrriten, collections to be transferred, ... can
be configured

• Other types of I/O services can be configured
to support more file formats (like raw data)

Detector Description
Management

Detector Description Management: Requirements

 A powerful detector description management system is necessary
across the full offline data processing workflow

 Provide consistent detector description for all applications

 Provide geometry format conversion for different applications

 Provide interface for alignment / conditions data

 Provide multiple version support

 Provide easy-to-use interfaces, and common functionalities for
applications (such as coodinates conversion, track length calculation
etc.)

18

Detector description Management

 Full HERD and beam test geometry are defined in XML files
 Elements, materials defined in common files then composed together

 Sub detectors can be defined separately with independent version

 Different combination of detector description can be selected for each run in config
file without re-compile

 Complex geometry (including the space station) from CAD format can be included

19

Detector description Management

 Full HERD and beam test geometry are defined in XML files

20

Detector description Management

 Full HERD and beam test geometry are defined in XML files

21

Geometry Service

 To provide an easy-to-use interface for applications, the
Geometry Service is implemented to integrate and provide
various detector description information:

 Conversion between geometry description formats (XML,
Geant4, ROOT, GDML, ...)

 Global-Local coordinates conversion

 Volume ID systems conversion

 Calculate track length in physics volumes

 Provide interface to get information of physical volume,
placed volume and logical volume (dimention, position, ...)

 These functionalities are actively used in simulation,
digitization and reconstruction algorithms

22

Geometry Service

 To provide an easy-to-use interface for applications, the
Geometry Service is implemented to integrate and provide
various detector description information

23

Parallelized Detector Simulation

Multi-threading Support: Motivation

 Motivation for HERD: full simulation of high energy (~PeV) heavy
nucleons costs too much time (~day) and memory

 Simulating one ~1 PeV proton costs ~5h

 Simulating one ~3 PeV helium costs ~20h

 Memory consumption is too large, often causing job gets killed

 Applying concurrent simulation can:
 Reduce absolute time cost of simulating heavy particles

 Solve the large memory consuming problem
 Memory allocation is one a per-core basis on computing clusters
 Event level: sharing geometry, common services, I/O Buffer, physics list ...
 Track level: largely increase memory limitation for one event

 Multi-level of multi-threading can be applied
 Event level (between events): multiple events are processed concurrently

 Track level (inside an event): one event is processed with multiple threads
 Secondary tracks are simulated concurrently

25Performance of multi-threading simulation shown on p26 and p28

MT SNiPER

 SNiPER provides very easy-to-use interfaces for building the event-level
multi-threaded applications

 SNiPER Muster (Multiple SNiPER Task Scheduler) works as a thread
pool/scheduler based on TBB

 A GlobalStore is developed to support parallel event data management

 Data I/O is bound to dedicated I/O thread to speed up of
reading/writing data from/to files

 Application code is mostly consistent for serially and paralleled
execution

GlobalStore

26

Parallelized Detector Simulation

 Based on the MT-SNiPER and parallelized DM system, the event level parallelized
detector simulation is developed

 Simulate events concurrently in multiple threads

 Basic performance tests show promising scalability

27

Examples of simulating 100 GeV proton

Parallelized Detector Simulation

28

 Sub-event level detector simulation is being developed, for ultra
high energy particles to reduce latency

 Simulate the primary particle in the main Task

 Secondary particles are dispatched to worker threads

 Simulated hits are merged after all tracks are simulated

• Basic functionalities
(spiting, simulating and
merging) are
implemented

• Results are validated
• Performance needs to

be further optimized
• Separated tasks need to

be merged

Parallelized Detector Simulation

29

 Sub-event level detector simulation is developed (being optimized), to
reduce latency and memory comsuption for ultra high energy particles

 Simulate the primary particle in the main Task

 Secondary particles are dispatched to worker threads

 Simulated hits are merged after all tracks are simulated

• Basic functionalities (spiting,
simulating and merging) are
implemented

• Results are validated
• Performance can be further

optimized
• With parallelized simulation ,

we can smoothly simulate
very high (~PeV)heavy
nucleons without
limitations.

Examples of simulating 100 GeV proton

Event Display

Detector and Event Display

 HERD Event visualization (HERDEvE) is being developed

 Based on Web3D technology and the open-source JSROOT

 3D engine and graphic library based on Three.JS

 Using the Vue.js HTML5 development framework to implement the Web
interface

 Reducing 3D motion lag by the multi-threading capabilities of Web Worker
framework

 Geometry information from
detector description from
DD4hep (XML), and event
data read from podio

 State-of-the-art technology
road-map is applied

31

Detector and Event Display

32
32

Detector and Event Display

A Unity based WebGL application, now
used in beam test

Features supported:
• Environment light color/emission, rendering

mode.
• Sub-detector selection/deselection,color,

transparency.
• MC hit/track
• SCD/STK/FIT cluster/track
• CALO energy on each cell, color, rendering

setting.
• CALO shower projection with selected

cells, to ROOT plots.
• Both data stream mode and individual

event display mode supported.
• Various geometry and any standard podio

format supported.

Machine Learning Integration

 ONNX Runtime to support machine learning runtime inference
 Some applications in HERDOS are based on ML models developed

in Python, such as particle ID, directionality reconstruction etc.

 As an easy and unified way to integrate different models in
HERDOS and run inference easily

 Convert from other models to ONNX, such as
Tensorflow, PyTorch etc.

 Potentially to accelerate inference of larger
model on different hardware platform
 (CPU/GPU)

34

Software Validation

 A validation toolkit is developed to build validation at different levels

 Support building tests of multiple levels
 Tests based return code, logging parser (predefined log pattern)

 Tests based on hardware limitations (wall time, memory, ...)

 Performance (CPU, memory, disk, network, ...) profiling

 Physics validation based on statistical tests (comparison with
standard distribution)

3535

Useful Links

 CVMFS
 /cvmfs/herd.ihep.ac.cn/HERDOS

 HERDOS Gitlab:
 https://code.ihep.ac.cn/herdos/offline

 HERDOS Documentation
 https://herd.ihep.ac.cn/internal/herdos/manual

 Tutorial
 https://indico.ihep.ac.cn/event/23203/

36

